Math'φsics

Menu
  • Acceuil
  • Maths
  • Physique
    • Maths
    • Physique
  • Croissances comparées

    Formulaire de report

    Soient \(\alpha, \beta, a\in \Bbb R\) tq \(\alpha, \beta\gt 0\) et a>1
    Alors :
    1. $$\underset{n\longrightarrow\infty}\lim\frac{n^\alpha}{a^n}={{0}}$$
    2. $$\underset{n\longrightarrow\infty}\lim\frac {(ln (n))^\beta}{n^\alpha}={{0}}$$
    3. $$\underset{n\longrightarrow\infty}\lim\frac{(ln(n))^\beta}{a^n}={{0}}$$

    \(\longrightarrow\) preuve de 1:
    Posons \(U_n=\frac{n^\alpha}{a^n}\gt 0\)
    Et \(V_n=U_n^\frac1\alpha=e^{\frac 1\alpha ln(U_n)}\)
    On a: $$V_n=\frac {n}{a^{\frac {n}{\alpha} } }=\frac{n}{(a^{\frac{1}{\alpha} })^n }=\frac {n}{((b+1)^n}$$
    Comme \(a\gt 1\) \(\implies\) \(a^{\frac {1}{\alpha} }\gt 1\) \(\implies\) \(b:=a^{\frac {1}{\alpha} }-1\gt 0\)
    D'où $$V_n = \frac {n}{1+\begin{pmatrix} n\\ 1\end{pmatrix}b+....+\begin{pmatrix} n\\ k\end{pmatrix}b^k+....+\begin{pmatrix} n\\ n\end{pmatrix}b^n}$$
    Binome N:
    \(0\leq V_n \leq \frac {n}{\begin{pmatrix} n\\ 2\end{pmatrix}b^2}=\frac{1}{\frac{(n-1)}{2} b^2}\)
    Donc
    $$0\leq V_n \leq \frac{2}{(n-1) b^2}, n\geq 2$$
    Donc \(V_n\) converge vers 0
    On a \(U_n =V_n^\alpha\)
    D'où: \(U_n\) tend vers 0